Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172036

RESUMO

Zymoseptoria tritici is the fungal pathogen responsible for Septoria tritici blotch on wheat. Disease outcome in this pathosystem is partly determined by isolate-specific resistance, where wheat resistance genes recognize specific fungal factors triggering an immune response. Despite the large number of known wheat resistance genes, fungal molecular determinants involved in such cultivar-specific resistance remain largely unknown. We identified the avirulence factor AvrStb9 using association mapping and functional validation approaches. Pathotyping AvrStb9 transgenic strains on Stb9 cultivars, near isogenic lines and wheat mapping populations, showed that AvrStb9 interacts with Stb9 resistance gene, triggering an immune response. AvrStb9 encodes an unusually large avirulence gene with a predicted secretion signal and a protease domain. It belongs to a S41 protease family conserved across different filamentous fungi in the Ascomycota class and may constitute a core effector. AvrStb9 is also conserved among a global Z. tritici population and carries multiple amino acid substitutions caused by strong positive diversifying selection. These results demonstrate the contribution of an 'atypical' conserved effector protein to fungal avirulence and the role of sequence diversification in the escape of host recognition, adding to our understanding of host-pathogen interactions and the evolutionary processes underlying pathogen adaptation.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Peptídeo Hidrolases/metabolismo , Proteínas Fúngicas/metabolismo , Endopeptidases/metabolismo , Doenças das Plantas/microbiologia
3.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085913

RESUMO

The ascomycete Zymoseptoria tritici is the causal agent of Septoria leaf blotch on wheat. Disease control relies mainly on resistant wheat cultivars and on fungicide applications. The fungus displays a high potential to circumvent both methods. Resistance against all unisite fungicides has been observed over decades. A different type of resistance has emerged among wild populations with multidrug-resistant (MDR) strains. Active fungicide efflux through overexpression of the major facilitator gene MFS1 explains this emerging resistance mechanism. Applying a bulk-progeny sequencing approach, we identified in this study a 519-bp long terminal repeat (LTR) insert in the MFS1 promoter, a relic of a retrotransposon cosegregating with the MDR phenotype. Through gene replacement, we show the insert as a mutation responsible for MFS1 overexpression and the MDR phenotype. Besides this type I insert, we found two different types of promoter inserts in more recent MDR strains. Type I and type II inserts harbor potential transcription factor binding sites, but not the type III insert. Interestingly, all three inserts correspond to repeated elements present at different genomic locations in either IPO323 or other Z. tritici strains. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici and which contribute to its adaptive potential. IMPORTANCE Disease control through fungicides remains an important means to protect crops from fungal diseases and to secure the harvest. Plant-pathogenic fungi, especially Zymoseptoria tritici, have developed resistance against most currently used active ingredients, reducing or abolishing their efficacy. While target site modification is the most common resistance mechanism against single modes of action, active efflux of multiple drugs is an emerging phenomenon in fungal populations reducing additionally fungicides' efficacy in multidrug-resistant strains. We have investigated the mutations responsible for increased drug efflux in Z. tritici field strains. Our study reveals that three different insertions of repeated elements in the same promoter lead to multidrug resistance in Z. tritici. The target gene encodes the membrane transporter MFS1 responsible for drug efflux, with the promoter inserts inducing its overexpression. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici.

4.
Environ Microbiol ; 17(8): 2805-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25627815

RESUMO

Septoria leaf blotch is mainly controlled by fungicides. Zymoseptoria tritici, which is responsible for this disease, displays strong adaptive capacity to fungicide challenge. It developed resistance to most fungicides due to target site modifications. Recently, isolated strains showed cross-resistance to fungicides with unrelated modes of action, suggesting a resistance mechanism known as multidrug resistance (MDR). We show enhanced prochloraz efflux, sensitive to the modulators amitryptiline and chlorpromazine, for two Z. tritici strains, displaying an MDR phenotype in addition to the genotypes CYP51(I381V Y461H) or CYP51(I381V ΔY459/) (G460) , respectively, hereafter named MDR6 and MDR7. Efflux was also inhibited by verapamil in the MDR7 strain. RNA sequencing lead to the identification of several transporter genes overexpressed in both MDR strains. The expression of the MgMFS1 gene was the strongest and constitutively high in MDR field strains. Its inactivation in the MDR6 strain abolished resistance to fungicides with different modes of action supporting its involvement in MDR in Z. tritici. A 519 bp insert in the MgMFS1 promoter was detected in half of the tested MDR field strains, but absent from sensitive field strains, suggesting that the insert is correlated with the observed MDR phenotype. Besides MgMfs1, other transporters and mutations may be involved in MDR in Z. tritici.


Assuntos
Ascomicetos/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Proteínas de Membrana Transportadoras/genética , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Sequência de Bases , Clorpromazina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Genótipo , Dados de Sequência Molecular , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , RNA Fúngico/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...